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Introduction

The Boolean satisfiability (SAT) problem:

Given Boolean variables x1, . . . , xn and set of clauses
C1, . . . ,Cm, is there assignment to the variables satisfying
all clauses?

Example:

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

Clauses are disjunctions of literals x , x .
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Introduction

Encoding as SAT used to solve various problems:

I Planning and scheduling problems.

I Hardware verification problems.

I Problems in combinatorics.

Much progress on so-called SAT solvers in past
decades [BS97, MS99, MMZ+01].
Main algorithm: CDCL (Conflict Driven Clause Learning)
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The pseudo-Boolean SAT problem

Limitation of propositional SAT:
Clauses are fairly bad at encoding real-world constraints.

We consider the generalization of SAT to linear inequalities.
(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) is equivalent to x1 + x2 + x3 ≥ 2.
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The pseudo-Boolean SAT problem

We represent linear inequalities over {0, 1} in normalized form:

I All inequalities are of type ≥.

I Negative coefficients replaced by negative literals.

x1 + x2 + x3 ≤ 1 becomes x1 + x2 + x3 ≥ 2.

We call the right hand side the degree.

We use c for coefficients and ` for literals.
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Cutting planes proof system

Given a set of linear inequalities including xi ≥ 0, x i ≥ 0 ∀i .
Rules:

I Addition: ∑
ci`i ≥ w

∑
c ′
i `

′
i ≥ w ′∑

ci`i +
∑

c ′
i `

′
i ≥ w + w ′

I Multiplication: for all positive integers d ,∑
ci`i ≥ w∑

d · ci`i ≥ d · w
I Division: for all positive integers d ,∑

ci`i ≥ w∑
dci/de`i ≥ dw/de

Exponentially stronger than proof system underlying CDCL.
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Earlier pseudo-Boolean SAT solvers

Conversion to clauses (“resolution-based”):

I MiniSat+ [ES06]

I Sat4j [LP10]

I OpenWBO [MML14]

I NaPS [SN15]

Reasoning with linear inequalities (“cutting planes-based”):

I Galena [CK05]

I Pueblo [SS06]

I Sat4j [LP10]
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Our pseudo-Boolean SAT solver

We present a new pseudo-Boolean SAT solver, RoundingSat.
Strengths:

I Reasons with linear inequalities, so more formulas solvable.

I Highly optimized, written in C++.
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The CDCL algorithm

Backtracking search, enhanced with

I Unit propagation.

I Clause learning.
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The CDCL algorithm: unit propagation

If all but one literals in a clause falsified:

x1 ∨ x2 ∨ x3 ∨ x4

then last literal must be satisfied:

x1 ∨ x2 ∨ x3 ∨ x4

Unit propagation uses this rule to find implications.
If C propagates `, then C is the reason of `.
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The CDCL algorithm: clause learning

If unit propagation falsifies a clause, derive a learnt clause.

Learnt clause directs search away from the conflicting state.

11 / 26



PB extension of CDCL

Early developments: [DG02, CK05].

I Extend unit propagation.

I Extend clause learning to pseudo-Boolean learning.
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PB extension of CDCL: unit propagation

One uses slack function:
for C =

∑
ci`i ≥ w , ρ partial assignment,

slack(C , ρ) =
∑

`i not falsified by ρ

ci − w

Lower slack ⇒ closer to propagating.
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PB extension of CDCL: learning

We use generalized resolution to combine linear inequalities.

Takes linear combination such that some variable occuring with
opposite signs cancels.

Res(2x + y ≥ 1, x + z ≥ 1, x)

= Res(2x + y ≥ 1, 2x + 2z ≥ 2, x)

= 2x + y + 2x + 2z ≥ 1 + 2

= y + 2z ≥ 1
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PB extension of CDCL: execution example

Given two constraints

I C : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

I C ′ : 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

We set x1 = 0.
C propagates x2, x3 and x4.
Now C ′ is falsified, so we start conflict analysis.

I ρ = (x1, x2, x3, x4).

I Cconfl = C ′.

I reason(x2, ρ) = reason(x3, ρ) = reason(x4, ρ) = C .
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PB extension of CDCL: learning

while termination criterion does not hold do
`← literal assigned last on the trail ρ;

if ` occurs in Cconfl then
Creason ← reason(`, ρ);
Creason ← reduceReason(Creason,Cconfl, `, ρ);

Cconfl ← Res(Cconfl,Creason, `);

end
ρ← removeLast(ρ);

end
return Cconfl;

(Green: new compared to CDCL)
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PB extension of CDCL: reason reduction

We discuss the method of [CK05] and the one of RoundingSat.

Operations used:

I Weakening: if x1 + x2 + x3 ≥ 2, then x1 + x2 ≥ 1.

I Saturation: if x + 3y ≥ 2, then x + 2y ≥ 2.

I Division: as defined before,∑
ci`i ≥ w∑

dci/de`i ≥ dw/de
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Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6

1.

2.
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Reason reduction of RoundingSat

Same example:

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6

1. Weaken non-falsified literals in Creason with coefficient not
divisible by coefficient of x4.

2. Divide by coefficient of x4.
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Experimental results: PB16 decision track, small integers

Entries: number of solved instances (satisfiable + unsatisfiable)

Bold: solver is (one of) the best in category

RoundingSat Sat4j Res+CP Sat4j Res Open-WBO
PB05 aloul 36 + 21 36 + 21 36 + 3 36 + 6
PB06 manquiho 14 + 0 14 + 0 14 + 0 3 + 0
PB06 ppp-problems 4 + 0 4 + 0 4 + 0 3 + 0
PB06 uclid 1 + 47 1 + 47 1 + 47 1 + 49
PB06 liu 16 + 0 16 + 0 16 + 0 17 + 0
PB06 namasivayam 72 + 128 72 + 128 72 + 128 72 + 128
PB06 prestwich 10 + 0 11 + 0 9 + 0 14 + 0
PB06 roussel 0 + 22 0 + 22 0 + 4 0 + 4
PB10 oliveras 34 + 32 34 + 32 34 + 33 34 + 33
PB11 heinz 2 + 0 2 + 0 2 + 0 2 + 0
PB11 lopes 42 + 26 37 + 25 37 + 25 33 + 28
PB12 sroussel 31 + 0 21 + 0 23 + 0 29 + 1
PB16 elffers 0 + 287 0 + 229 0 + 142 0 + 213
PB16 nossum 68 + 0 39 + 0 39 + 0 55 + 0
PB16 quimper 43 + 214 43 + 213 43 + 213 46 + 241

Sum 373 + 777 330 + 717 330 + 595 345 + 703
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Experimental results

I RoundingSat dominates Sat4j (both versions).

I RoundingSat and Sat4j Res+CP better than resolution-based
solvers on 3 categories.

I OpenWBO sometimes better than RoundingSat, sometimes
worse.
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Conclusion

RoundingSat shows that reasoning with linear inequalities can be
competitive on many different domains.
And sometimes, it is crucial for performance.

Future work:

I Extend to optimization track in non-trivial way.

Thank you!
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