
Divide and Conquer: Towards Faster
Pseudo-Boolean Solving

Jan Elffers

KTH Royal Institute of Technology

NordConsNet Workshop 2018
Gothenburg, Sweden

May 29, 2018

Joint work with Jakob Nordström

To appear at IJCAI-ECAI 2018

1 / 26



Introduction

The Boolean satisfiability (SAT) problem:

Given Boolean variables x1, . . . , xn and set of clauses
C1, . . . ,Cm, is there assignment to the variables satisfying
all clauses?

Example:

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

Clauses are disjunctions of literals x , x .

2 / 26



Introduction

Encoding as SAT used to solve various problems:

I Planning and scheduling problems.

I Hardware verification problems.

I Problems in combinatorics.

Much progress on so-called SAT solvers in past
decades [BS97, MS99, MMZ+01].
Main algorithm: CDCL (Conflict Driven Clause Learning)

3 / 26



The pseudo-Boolean SAT problem

Limitation of propositional SAT:
Clauses are fairly bad at encoding real-world constraints.

We consider the generalization of SAT to linear inequalities.
(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) is equivalent to x1 + x2 + x3 ≥ 2.

4 / 26



The pseudo-Boolean SAT problem

We represent linear inequalities over {0, 1} in normalized form:

I All inequalities are of type ≥.

I Negative coefficients replaced by negative literals.

x1 + x2 + x3 ≤ 1 becomes x1 + x2 + x3 ≥ 2.

We call the right hand side the degree.

We use c for coefficients and ` for literals.

5 / 26



Cutting planes proof system

Given a set of linear inequalities including xi ≥ 0, x i ≥ 0 ∀i .
Rules:

I Addition: ∑
ci`i ≥ w

∑
c ′
i `

′
i ≥ w ′∑

ci`i +
∑

c ′
i `

′
i ≥ w + w ′

I Multiplication: for all positive integers d ,∑
ci`i ≥ w∑

d · ci`i ≥ d · w
I Division: for all positive integers d ,∑

ci`i ≥ w∑
dci/de`i ≥ dw/de

Exponentially stronger than proof system underlying CDCL.

6 / 26



Earlier pseudo-Boolean SAT solvers

Conversion to clauses (“resolution-based”):

I MiniSat+ [ES06]

I Sat4j [LP10]

I OpenWBO [MML14]

I NaPS [SN15]

Reasoning with linear inequalities (“cutting planes-based”):

I Galena [CK05]

I Pueblo [SS06]

I Sat4j [LP10]

7 / 26



Our pseudo-Boolean SAT solver

We present a new pseudo-Boolean SAT solver, RoundingSat.
Strengths:

I Reasons with linear inequalities, so more formulas solvable.

I Highly optimized, written in C++.

8 / 26



The CDCL algorithm

Backtracking search, enhanced with

I Unit propagation.

I Clause learning.

9 / 26



The CDCL algorithm: unit propagation

If all but one literals in a clause falsified:

x1 ∨ x2 ∨ x3 ∨ x4

then last literal must be satisfied:

x1 ∨ x2 ∨ x3 ∨ x4

Unit propagation uses this rule to find implications.
If C propagates `, then C is the reason of `.

10 / 26



The CDCL algorithm: clause learning

If unit propagation falsifies a clause, derive a learnt clause.

Learnt clause directs search away from the conflicting state.

11 / 26



PB extension of CDCL

Early developments: [DG02, CK05].

I Extend unit propagation.

I Extend clause learning to pseudo-Boolean learning.

12 / 26



PB extension of CDCL: unit propagation

One uses slack function:
for C =

∑
ci`i ≥ w , ρ partial assignment,

slack(C , ρ) =
∑

`i not falsified by ρ

ci − w

Lower slack ⇒ closer to propagating.

13 / 26



PB extension of CDCL: learning

We use generalized resolution to combine linear inequalities.

Takes linear combination such that some variable occuring with
opposite signs cancels.

Res(2x + y ≥ 1, x + z ≥ 1, x)

= Res(2x + y ≥ 1, 2x + 2z ≥ 2, x)

= 2x + y + 2x + 2z ≥ 1 + 2

= y + 2z ≥ 1

14 / 26



PB extension of CDCL: execution example

Given two constraints

I C : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

I C ′ : 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

We set x1 = 0.
C propagates x2, x3 and x4.
Now C ′ is falsified, so we start conflict analysis.

I ρ = (x1, x2, x3, x4).

I Cconfl = C ′.

I reason(x2, ρ) = reason(x3, ρ) = reason(x4, ρ) = C .

15 / 26



PB extension of CDCL: execution example

Given two constraints

I C : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

I C ′ : 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

We set x1 = 0.

C propagates x2, x3 and x4.
Now C ′ is falsified, so we start conflict analysis.

I ρ = (x1, x2, x3, x4).

I Cconfl = C ′.

I reason(x2, ρ) = reason(x3, ρ) = reason(x4, ρ) = C .

15 / 26



PB extension of CDCL: execution example

Given two constraints

I C : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

I C ′ : 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

We set x1 = 0.
C propagates x2, x3 and x4.

Now C ′ is falsified, so we start conflict analysis.

I ρ = (x1, x2, x3, x4).

I Cconfl = C ′.

I reason(x2, ρ) = reason(x3, ρ) = reason(x4, ρ) = C .

15 / 26



PB extension of CDCL: execution example

Given two constraints

I C : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

I C ′ : 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

We set x1 = 0.
C propagates x2, x3 and x4.
Now C ′ is falsified, so we start conflict analysis.

I ρ = (x1, x2, x3, x4).

I Cconfl = C ′.

I reason(x2, ρ) = reason(x3, ρ) = reason(x4, ρ) = C .

15 / 26



PB extension of CDCL: execution example

Given two constraints

I C : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

I C ′ : 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

We set x1 = 0.
C propagates x2, x3 and x4.
Now C ′ is falsified, so we start conflict analysis.

I ρ = (x1, x2, x3, x4).

I Cconfl = C ′.

I reason(x2, ρ) = reason(x3, ρ) = reason(x4, ρ) = C .

15 / 26



PB extension of CDCL: learning

while termination criterion does not hold do
`← literal assigned last on the trail ρ;

if ` occurs in Cconfl then
Creason ← reason(`, ρ);
Creason ← reduceReason(Creason,Cconfl, `, ρ);

Cconfl ← Res(Cconfl,Creason, `);

end
ρ← removeLast(ρ);

end
return Cconfl;

(Green: new compared to CDCL)

16 / 26



PB extension of CDCL: reason reduction

We discuss the method of [CK05] and the one of RoundingSat.

Operations used:

I Weakening: if x1 + x2 + x3 ≥ 2, then x1 + x2 ≥ 1.

I Saturation: if x + 3y ≥ 2, then x + 2y ≥ 2.

I Division: as defined before,∑
ci`i ≥ w∑

dci/de`i ≥ dw/de

17 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6

1.

2.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6

1. Try generalized resolution.

2.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6

Res(Cconfl,Creason, x4) : x5 ≥ 1

1. Try generalized resolution.

2.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6

Res(Cconfl,Creason, x4) : x5 ≥ 1

1. Try generalized resolution.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1

+ 2x2

+ 2x3 + 2x4 + x5 ≥ 4

1. Try generalized resolution.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1

+ 2x2

+ 2x3 + 2x4 + x5 ≥ 4

1. Try generalized resolution.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1

+ 2x2

+ 2x3 + 2x4 + x5 ≥ 4

Res(Cconfl,Creason, x4) : 2x2 + x5 ≥ 1

1. Try generalized resolution.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1

+ 2x2

+ 2x3 + 2x4 + x5 ≥ 4

Res(Cconfl,Creason, x4) : 2x2 + x5 ≥ 1

1. Try generalized resolution.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1

+ 2x2 + 2x3

+ 2x4 + x5 ≥ 2

1. Try generalized resolution.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1

+ 2x2 + 2x3

+ 2x4 + x5 ≥ 2

1. Try generalized resolution.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1

+ 2x2 + 2x3

+ 2x4 + x5 ≥ 2

Res(Cconfl,Creason, x4) : 2x2 + 2x3 + x5 ≥ 1

1. Try generalized resolution.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1

+ 2x2 + 2x3

+ 2x4 + x5 ≥ 2

Res(Cconfl,Creason, x4) : 2x2 + 2x3 + x5 ≥ 1

1. Try generalized resolution.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1

+ 2x2 + 2x3

+ 2x4

+ x5

≥ 1

1. Try generalized resolution.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason :

2

x1

+ 2x2 + 2x3

+

2

x4

+ x5

≥ 1

1. Try generalized resolution.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason :

2

x1

+ 2x2 + 2x3

+

2

x4

+ x5

≥ 1

1. Try generalized resolution.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason :

2

x1

+ 2x2 + 2x3

+

2

x4

+ x5

≥ 1

Res(Cconfl,Creason, x4) : 2x2 + 2x3 ≥ 1

1. Try generalized resolution.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of [CK05]

Reason reduction example.

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason :

2

x1

+ 2x2 + 2x3

+

2

x4

+ x5

≥ 1

Res(Cconfl,Creason, x4) : 2x2 + 2x3 ≥ 1

1. Try generalized resolution. Works, so terminate.

2. If not falsified, weaken non-falsified literal and saturate.

18 / 26



Reason reduction of RoundingSat

Same example:

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6

1. Weaken non-falsified literals in Creason with coefficient not
divisible by coefficient of x4.

2. Divide by coefficient of x4.

19 / 26



Reason reduction of RoundingSat

Same example:

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6

1. Weaken non-falsified literals in Creason with coefficient not
divisible by coefficient of x4.

2. Divide by coefficient of x4.

19 / 26



Reason reduction of RoundingSat

Same example:

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1 + 2x2 + 2x3 + 2x4

+ x5

≥ 5

1. Weaken non-falsified literals in Creason with coefficient not
divisible by coefficient of x4.

2. Divide by coefficient of x4.

19 / 26



Reason reduction of RoundingSat

Same example:

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason : 2x1 + 2x2 + 2x3 + 2x4

+ x5

≥ 5

1. Weaken non-falsified literals in Creason with coefficient not
divisible by coefficient of x4.

2. Divide by coefficient of x4.

19 / 26



Reason reduction of RoundingSat

Same example:

I ρ = (x1, x2, x3, x4).

I Cconfl = 2x1 + 2x2 + 2x3 + 2x4 ≥ 3.

I ` = x4, reason(`, ρ) = 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6.

Creason :

2

x1 +

2

x2 +

2

x3 +

2

x4

+ x5

≥ 3

1. Weaken non-falsified literals in Creason with coefficient not
divisible by coefficient of x4.

2. Divide by coefficient of x4.

19 / 26



Experimental results: PB16 decision track, small integers

Entries: number of solved instances (satisfiable + unsatisfiable)

Bold: solver is (one of) the best in category

RoundingSat Sat4j Res+CP Sat4j Res Open-WBO
PB05 aloul 36 + 21 36 + 21 36 + 3 36 + 6
PB06 manquiho 14 + 0 14 + 0 14 + 0 3 + 0
PB06 ppp-problems 4 + 0 4 + 0 4 + 0 3 + 0
PB06 uclid 1 + 47 1 + 47 1 + 47 1 + 49
PB06 liu 16 + 0 16 + 0 16 + 0 17 + 0
PB06 namasivayam 72 + 128 72 + 128 72 + 128 72 + 128
PB06 prestwich 10 + 0 11 + 0 9 + 0 14 + 0
PB06 roussel 0 + 22 0 + 22 0 + 4 0 + 4
PB10 oliveras 34 + 32 34 + 32 34 + 33 34 + 33
PB11 heinz 2 + 0 2 + 0 2 + 0 2 + 0
PB11 lopes 42 + 26 37 + 25 37 + 25 33 + 28
PB12 sroussel 31 + 0 21 + 0 23 + 0 29 + 1
PB16 elffers 0 + 287 0 + 229 0 + 142 0 + 213
PB16 nossum 68 + 0 39 + 0 39 + 0 55 + 0
PB16 quimper 43 + 214 43 + 213 43 + 213 46 + 241

Sum 373 + 777 330 + 717 330 + 595 345 + 703

20 / 26



Experimental results

I RoundingSat dominates Sat4j (both versions).

I RoundingSat and Sat4j Res+CP better than resolution-based
solvers on 3 categories.

I OpenWBO sometimes better than RoundingSat, sometimes
worse.

21 / 26



Conclusion

RoundingSat shows that reasoning with linear inequalities can be
competitive on many different domains.
And sometimes, it is crucial for performance.

Future work:

I Extend to optimization track in non-trivial way.

Thank you!

22 / 26



Conclusion

RoundingSat shows that reasoning with linear inequalities can be
competitive on many different domains.
And sometimes, it is crucial for performance.

Future work:

I Extend to optimization track in non-trivial way.

Thank you!

22 / 26



References I

Roberto J. Bayardo Jr. and Robert Schrag.
Using CSP look-back techniques to solve real-world SAT
instances.
In Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI ’97), pages 203–208, July 1997.

Donald Chai and Andreas Kuehlmann.
A fast pseudo-Boolean constraint solver.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 24(3):305–317, March 2005.
Preliminary version in DAC ’03.

Heidi E. Dixon and Matthew L. Ginsberg.
Inference methods for a pseudo-Boolean satisfiability solver.
In Proceedings of the 18th National Conference on Artificial
Intelligence (AAAI ’02), pages 635–640, July 2002.

23 / 26



References II

Niklas Eén and Niklas Sörensson.
Translating pseudo-Boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation,
2(1-4):1–26, 2006.

Daniel Le Berre and Anne Parrain.
The Sat4j library, release 2.2.
Journal on Satisfiability, Boolean Modeling and Computation,
7:59–64, 2010.

Ruben Martins, Vasco M. Manquinho, and Inês Lynce.
Open-WBO: A modular MaxSAT solver.
In Proceedings of the 17th International Conference on Theory
and Applications of Satisfiability Testing (SAT ’14), volume
8561 of Lecture Notes in Computer Science, pages 438–445.
Springer, July 2014.

24 / 26



References III

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao,
Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th Design Automation Conference
(DAC ’01), pages 530–535, June 2001.

João P. Marques-Silva and Karem A. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, May 1999.
Preliminary version in ICCAD ’96.

Masahiko Sakai and Hidetomo Nabeshima.
Construction of an ROBDD for a PB-constraint in band form
and related techniques for PB-solvers.
IEICE TRANSACTIONS on Information and Systems,
98-D(6):1121–1127, 2015.

25 / 26



References IV

Hossein M. Sheini and Karem A. Sakallah.
Pueblo: A hybrid pseudo-Boolean SAT solver.
Journal on Satisfiability, Boolean Modeling and Computation,
2(1-4):165–189, March 2006.
Preliminary version in DATE ’05.

26 / 26


