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The SAT Problem

I Literal a: Boolean variable x or its negation x (or ¬x)

I Clause C = a1 ∨ · · · ∨ ak : disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

I CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

Has F satisfying assignment?
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The Power of so called CDCL SAT Solvers

2017 SAT Competition [BHJ17]
I largest solved benchmark (g2-T96.1.1.cnf)

I 8 905 808 variables
I 32 322 587 clauses
I verifiable UNSAT in 4126.12s

I smallest unsolved (mp1-bsat222-777.cnf)
I 222 variables
I 777 clauses
I timelimit 5000s

Explanation?
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Understanding Performance

Problem instance determines:

I solver performance

I which algorithms / heuristics are important / good

Solvers essentially do resolution
⇒ well understood through proof complexity

I scalable UNSAT problems

I extremal w.r.t. certain property
⇒ lower bound on runtime

I expect different behaviour
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Our Project

Goal:

I understand which / when settings are important

Our approach for reaching this goal:

I crafted benchmarks1, using knowledge from proof complexity
I benchmarks are

I scalable
I easy
I extremal (or close to)

I instrument solver to switch between algorithms / heuristics

1generated using CNFGen [LENV17]
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Related Work

I instrumentation [LM02, KSM11]

I decision heuristics [BF15]

I restart schemes [Hua07]

I structural restricted benchmarks [PJ09]

I random k-SAT [CA96, SLM92]

I analysing and evaluating theory formula [MN14]

I resolution space on theory formula [JMNŽ12]

Our approach:

I crafted benchmarks, using knowledge from proof complexity
I benchmarks are

I scalable
I easy
I extremal (or close to)

I instrument solver to switch between algorithms / heuristics
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The CDCL Algorithm [DP60, DLL62, MS99, MMZ+01, . . . ]

Used Implementations: MiniSat [ES04], Glucose [AS09]

1: procedure solve(F )
2: while v ← next variable decision do
3: assign v to chosen phase
4: do unit (fact) propagation
5: if conflict then
6: add clause learned from conflict
7: if decision to be undone then undo bad decisions
8: else return UNSAT

9: k ← amount of clause erasure
10: if k > 0 then
11: remove k clauses with bad clause assessment
12: if time for restart then
13: undo all decisions

14: return SAT
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Restart Policy
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Heatmaps

I row: setting

I column: scaled instances

I colour: runtime
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Analysing PAR-Score

PAR-X -score: runtime if solved, otherwise X · timelimit
(X = 2 used)

Analyse:

I fix some “knobs”

I compute expected score
(average of settings containing fixed “knobs”)

I compare to global average, but:
I always some difference
I choose random subset of settings
⇒ yields standard deviation

(used to “value” expected score)
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The CDCL Algorithm

1: procedure solve(F )
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Clause Learning, Going Beyond Treelike Resolution
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DB Size on Theoretical Time-Space Trade-Off Formulas

Tseitin formulas on grid graphs (5 rows)
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The CDCL Algorithm
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Clause Assessment

−40

−20

0

20

random − LBD random − activity−based

D
iff

er
en

ce
 in

 n
um

be
r 

of
 ti

m
eo

ut
s

All formula families

Stephan Gocht CDCL on Theory Benchmarks 16/ 24



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: assign v to chosen phase
4: do unit propagation
5: if conflict then
6: add clause learned from conflict
7: if decision to be undone then undo bad decisions
8: else return UNSAT
9: k ← amount of clause erasure

10: if k > 0 then
11: remove k clauses with bad clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 17/ 24



Variable Decision
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Variable Decision
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Restarts for Unrestricted Resolution
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The CDCL Algorithm
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Phase Saving
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Conclusions

I clause learning is important
(if you need to go beyond treelike resolution)

I choose the right database size
(required space vs. overhead)

I restarts help to harness the full power of resolution
(if necessary)

I VSIDS is good for variable decisions
(but can go badly wrong)

Thank you for your attention!
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