
DUCT: An Upper Confidence Bound Approach to
Distributed Constraint Optimisation Problems

Brammert Ottens Christos Dimitrakakis Boi Faltings

May 28, 2018



Examples



Examples



DCOP: Distributed constrained optimisation
I Variables X , {x1, . . . , xN}.
I Factors F , {f1, . . . , fM}

f (x) ,
M∑
i=1

fi (xi ) <∞, (1)

x1 x2 x3 x4

f1 f2

The optimisation problem

min
x

f (x)



Communication

Assume each variable xi is controlled by a single agent i .

x3 x2

x4

x1

(a) Constraint graph

x3

x2

x4

x1

(b) pseudo-tree

I Constraints are represented by edges in the constraint graph.

I Tree represents information flow, including back-edges.



Search graph
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Figure: The And/Or graph for the DCOP shown in Figure ??, with
∀iDi = {0, 1}. Different variable selections, in Or nodes, lead to
different contexts as we move down the tree. Whenever variables are
independent, the graph merges. For example, x4 has only two possible
contexts, since it does not depend on x1.



Random sampling

Algorithm 1: SAMPLE(a, k): random sampling

1 d = random value from Dk ;

2 while `k(a, d) =∞ and there are untried values do
3 d = random value from Dk ;
4 return d

Cost propagation

y tk = min
d∈Dk

`k(a, d) , (2)

y tk = `k(a, d) +
∑
k ′∈Ck

y tk ′ . (3)



Value propagation
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Value propagation

−1

0

1

−2

−2

0

−1

0

−1

x3

0

x4

−1

x3

−1

0

0

0

−1

0

0

0

−1

0

0

0

−1



DUCT sampling

Idea: Optimistic sampling

For each node i , choose option c minimising

Bi ,c , max

{
µi ,c − Li ,c , `(i , c) +

∑
k

Bk

}
, (4)

Confidence bounds

I µ: average cost so far for (i , c).

I L→ 0 as we explore i , c more.

I If children disagree, ignore L.
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Analysis

Definition
Let rt be the instantaneous regret

rt , y tD − f ∗(D), (5)

and ρT be the (simple) regret after T steps:

ρT , min {rt | t = 1, . . . ,T} . (6)

i.e. the ε-optimality of the best solution till time T .



Assumptions

Assumption

The number of very bad solutions within any solution subset A is
small.

λ ({x ∈ A | f (x) > f ∗(A) + ε}) ≤ λ (A) γε−β. (7)

Assumption

The set of optimal solutions has non-zero measure, i.e.

λ∗ , λ (D∗) > 0, (8)



Results

Theorem
A lower bound on the expected regret is E ρT ∈ Ω̃(e−T ).

Theorem
For the random algorithm

E ρT ∈ Õ(1/T + e−T ) (9)

Theorem
For DUCT

ρT ≤ Õ(1/∆T + e−T ), (10)

where ∆ captures how easy it is to distinguish a good branch.
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