Making Compact-Table Compact

Linnea Ingmar

Joint work with Christian Schulte

Uppsala University

Part of the work has been carried out at KTH Royal Institute of Technology

NordConsNet 29th May, 2018

Outline

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically

- Data-Structur Sharing Tables
- Evaluation
- Conclusion
- References

- 2. Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically Compact Data-Structures
- **3. Sharing Tables**
- 4. Evaluation
- 5. Conclusion

Background

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

Propagation algorithm for table constraints [1], [2], [3]

- Dynamically Compact Sparse Bit-Sets
- Dynamically Compact
- Sharing Tables
- Evaluation
- Conclusion
- References

- Propagation algorithm for table constraints [1], [2], [3]
- Elegant and simple

- Dynamically Compact Sparse Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

- Propagation algorithm for table constraints [1], [2], [3]
- Elegant and simple
- First described in 2016

- Dynamically Compact Sparse Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

- Propagation algorithm for table constraints [1], [2], [3]
- Elegant and simple
- First described in 2016
- Outperforms previously known algorithms

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

- Propagation algorithm for table constraints [1], [2], [3]
- Elegant and simple
- First described in 2016
- Outperforms previously known algorithms
- First implemented in OR-tools, now it exists in many solvers

Background

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

Solutions defined by an **explicit table** of tuples

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

Solutions defined by an **explicit table** of tuples

Tuples are numbered from 0 to n-1

Background

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion

WO

- Solutions defined by an **explicit table** of tuples
- **Tuples are numbered from 0 to** n-1
- Maintained in a bit-set (array of 64-bit words)

			И	6			и	ή				и	2			V	V ₃	
rds		1	1	0	1	1	0	0	0	Τ	1	0	1	1	1	0	0	1
	,																	
V.		1	2	1	2	6	7	1	1		1	0	2	1	E	7	2	0
X 0		Ŧ	2	T	2	0	/	4	Ŧ		Ŧ	0	2	Ŧ	5	/	5	0
<i>X</i> ₁		8	1	3	0	7	4	2	9		6	5	1	1	0	5	2	1
<i>X</i> 0 <i>X</i> 1 <i>X</i> 2		1	7	8	2	4	9	1	1		7	3	2	5	1	9	3	0
						4												

Background

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion

WO

References

- Solutions defined by an **explicit table** of tuples
- **Tuples are numbered from 0 to** n-1
- Maintained in a bit-set (array of 64-bit words)

The *i*-th bit is set iff the *i*-th tuple is still valid

			и	6			W	' 1				и	2			И	<i>v</i> 3	
r	ls	1	1	0	1	1	0	0	0	Γ	1	0	1	1	1	0	0	1
	Xο	1	2	1	2	6	7	4	1		1	8	2	1	5	7	3	0
	<i>X</i> 1	8	1	3	0	7	4	2	9		6	5	1	1	0	5	2	1
	Х2	1	7	8	2	6 7 4	9	1	1		7	3	2	5	1	9	3	0
		0		2		4									12			

For each variable-value pair $\langle x, v \rangle$

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets
- Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically Compact
- Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

- For each variable-value pair $\langle x, v \rangle$
- Static bit-set masks computed once

Background

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically
- Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

- For each variable-value pair $\langle x, v \rangle$
- Static bit-set masks computed once
- Encode which tuples support the pair

- For each variable-value pair $\langle x, v \rangle$
- Static bit-set masks computed once
- Encode which tuples support the pair
- The *i*-th bit set iff tuple nr. *i* has value *v* at *x*'s position

Background Dynamically Compact

- Sparse Bit-Sets
- Compact Bit-Set Dynamically
- Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

- For each variable-value pair $\langle x, v \rangle$
- Static bit-set masks computed once
- Encode which tuples support the pair
- The *i*-th bit set iff tuple nr. *i* has value *v* at *x*'s position

Background

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables Evaluation Conclusion

S

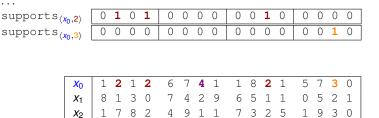
Background

Dynamically Compact

Sparse Bit-Sets

Sharing

Evaluation


Conclusion References

Tables

. . .

Support Bit-Sets

- For each variable-value pair $\langle x, v \rangle$
- Static bit-set masks computed once
- Encode which tuples support the pair
- The *i*-th bit set iff tuple nr. *i* has value v at x's position

NordConsNet

13 14 15

- For each variable-value pair $\langle x, v \rangle$
- Static bit-set masks computed once
- Encode which tuples support the pair
- The *i*-th bit set iff tuple nr. *i* has value v at x's position

supports	x₀,2⟩	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0
supports ₍₎	x₀,3⟩	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
supports ₍₎		0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	<i>X</i> 0	1	2	1	2	6	7	4	1	1 6	8	2	1	5	7	3	0
	<i>x</i> ₁	8	1	3	0	7	4	2	9	6	5	1	1	0	5	2	1
	<i>X</i> 2	1	7	8	2	4	9	1	1	7	3	2	5	1	9	3	0
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Background

- Dynamically Compact Sparse Bit-Sets

. . .

Sharing Tables Evaluation Conclusion

References

$dom(x_0) = \{1, 2, 3, 4, 5, 6, 7, 8\}$

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically
- Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

 $dom(x_0) = \{1, 2, 3, 4, 5, 6, 7, 8\}$

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

supports _(X0,2)	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0

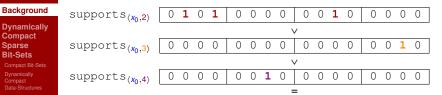
$$dom(x_0) = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables


Evaluation

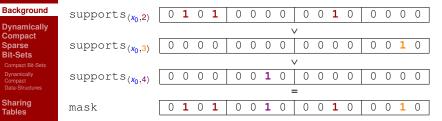
Conclusion

$supports_{\langle x_0,2\rangle}$	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0
								`	/							
$supports_{\langle X_0,3\rangle}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

 $dom(x_0) = \{1, 2, 3, 4, 5, 6, 7, 8\}$

Sharing Tables

Compact


Sparse Bit-Sets

Evaluation

Conclusion

 $dom(x_0) = \{1, 2, 3, 4, 5, 6, 7, 8\}$

Evaluation

Conclusion

A Variable Loses Values

 $dom(x_0) = \{1, 2, 3, 4, 5, 6, 7, 8\}$

Background	$supports_{\langle x_0,2\rangle}$	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0
Dynamically Compact	(^,-/								`	/							
Sparse Bit-Sets	$supports_{\langle x_0,3\rangle}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Compact Bit-Sets									``	/							
Dynamically Compact	$supports_{\langle x_0,4\rangle}$	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Data-Structures									=	=							
Sharing Tables	mask	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	0
Evaluation									8	Z							
Conclusion	words (old)	1	1	0	1	1	0	0	0	1	0	1	1	1	0	0	1
Contraction									-	-							

A Variable Loses Values

 $dom(x_0) = \{1, 2, 3, 4, 5, 6, 7, 8\}$

Background	$supports_{\langle x_0,2\rangle}$	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0
Dynamically Compact	11 (10,2)	L							`	/				I			
Sparse Bit-Sets	$supports_{\langle X_0,3\rangle}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Compact Bit-Sets									`	/							
Dynamically Compact	$supports_{\langle X_0,4\rangle}$	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Data-Structures									=	=							
Sharing Tables	mask	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	0
Evaluation									8	2							
Conclusion	words (old)	1	1	0	1	1	0	0	0	1	0	1	1	1	0	0	1
									=	=							
References	words (new)	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0

Backgr Dynam Compa Sparse Bit-Set

Sharin Tables Evalua Conclu Refere

A Variable Loses Values

 $dom(x_0) = \{1, 2, 3, 4, 5, 6, 7, 8\}$

ground	supports	2)	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0
nically act	\/	,	L							`	/							
е	supports	x ₀ ,3⟩	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
e ts et Bit-Sets										`	/							
cally t	supports	x₀ ,4⟩	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
ructures										-	=							
ng s	mask		0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	0
										G	Ż							
ation										c	×.							
	words (old)		1	1	0	1	1	0	0	0	2	0	1	1	1	0	0	1
ation usion	words (old)		1	1	0	1	1	0	0		1	0	1	1	1	0	0	1
	words (old) words (new		1	1	0	1	1 0	0	0	0	1	0	1	1 0	1	0	0	1 0
usion		()	0	-		1	0	0	0	0	1	-	-	1 0	l °	0	0	0
usion		/) X ₀	0	2	0	1	0	0	0	0 	1 - 0	8	1 1 2 1	1	5	0	0	0
usion		()	0	-		1	0	0	0	0	1	-	-	1 0 1 1 5	l °	0	0	0

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

Filter out values where words & supports $_{\langle X,V\rangle} = 0$

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically

Sharing Tables

Evaluation

Conclusion

References

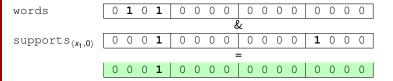
Filter out values where words & supports $_{\langle X,V\rangle} = 0$

 $\mathsf{dom}(x_1) = \{0, 1, 2, \ldots\}$

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically Compact

Sharing Tables


Evaluation

Conclusion

References

Filter out values where words & supports $_{\langle x,v\rangle} = 0$

$$dom(x_1) = \{0, 1, 2, \ldots\}$$

Value 0 is kept.

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically Compact

Sharing Tables

Evaluation

Conclusion

References

Filter out values where words & supports $_{\langle x,v\rangle} = 0$

$dom(x_1) = \{0, 1, 2, \ldots\}$

Same for 1.

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically Compact

Sharing Tables

Evaluation

Conclusion

References

Filter out values where words & supports $_{(x,v)} = 0$

$$dom(x_1) = \{0, 1, 2, \ldots\}$$

words	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
								8	ł							
$supports_{(x_1,2)}$	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0
								-	=							
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Value 2 is removed.

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically Compact

Sharing Tables

Evaluation

Conclusion

References

Filter out values where words & supports $_{(x,v)} = 0$

$$dom(x_1) = \{0, 1, 2, \ldots\}$$

words	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
								8	ł							
$supports_{(x_1,2)}$	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0
								-	=							
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Value 2 is removed.

And so on...

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

- Indexing structure tracks emptiness
- Operates on non-empty words only
- Performs well even when non-empty words are sparse

words	1 1 0 1	1 0 0 0	1 0 1 1	1 0 0 1
index	0	1	2	3
limit	= 4			

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

Intersection with mask:

mask	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0
words	1	1	0	1	1	0	0	0	1	0	1	1	1	0	0	1
index		0				1	L			4	2				3	
limit	= -	4														

Background

Dynamically
Compact
Sparse
Bit-Sets

Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

-	-		-			-	-			-	-			-	-	-
mask	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0
	&															
words	1	1	0	1	1	0	0	0	1	0	1	1	1	0	0	1
index	0				1					2	2		3			
		4														

limit =4

Background

Dynamically
Compact
Sparse
Bit-Sets

Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0
words	1	1	0	1	1	0	0	0	1	0	1	1	0	0	0	0
index	0				1					1	2		3			

limit = 3

Background

Dynamically
Compact
Sparse
Bit-Sets
Dynamically

Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask **1** 0 **1** 0 0 0 **1** 0 0 **1 1 1** 0 0 **1** 0

index 0 1 2	words	1 1 0 1	1 0 0 0	1 0 1 1
	index	0	1	2

limit = 3

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0
										8	k l					
words	1	1	0	1	1	0	0	0	1	0	1	1				
index		0				-	1			2	2					
limit	= :	3														

Background

Dynamically
Compact
Sparse
Bit-Sets
Compact Bit-Sets
Dynamically

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask **1** 0 **1** 0 0 0 **1** 0 0 **1 1 1** 0 0 **1** 0

index 0 1 2	words	1 1 0 1	1 0 0 0	0 0 1 1
	index	0	1	2

limit = 3

Background

Dynamically Compact Sparse Bit-Sets

Sharing Tables

Evaluation

Conclusion

References

mask	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0
						8	۶ ک									
words	1	1	0	1	1	0	0	0	0	0	1	1				
index		0				-	1			2	2					
limit	= :	3														

Background

Dynamically
Compact
Sparse
Bit-Sets
Compact Bit-Sets
Dynamically

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

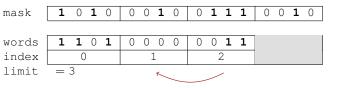
References

mask **1** 0 **1** 0 0 0 **1** 0 0 **1 1 1** 0 0 **1** 0

limit = 3

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets


Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

index[2] overwrites (or is swapped with) index[1]

Background

Dynamically
Compact
Sparse
Bit-Sets
Compact Bit-Sets
Dynamically

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0
words	1	1	0	1	0	0	0	0	0	0	1	1				
index		0				2	2									

limit = 2

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically

Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0
		&	2													
words	1	1	0	1	0	0	0	0	0	0	1	1				
index		0				2	2									
		~	_			_	_				_			_	_	

limit = 2

Background

Dynamically
Compact
Sparse
Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask **1** 0 **1** 0 0 0 **1** 0 0 **1 1** 1 0 0 **1** 0

ords	1 0 0 0	0 0 0 0	0011
ndex	0	2	

limit = 2

w i

Background

W

i

٦

Dynamically Compact Sparse Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

	w ₀	w ₁	w ₂					
ords	1 0 0 0	0 0 0 0	0 0 1 1					
ndex	0	2						
imit	= 2							

Further operations only consider w₀ and w₂

Background

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

	w ₀	w ₁	w ₂					
words	1 0 0 0	0 0 0 0	0 0 1 1					
index	0	2						
limit	= 2							

- Further operations only consider w₀ and w₂
- Trailing solver: undo operations upon backtrack

Background

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

	w ₀	w ₁	w ₂					
words	1 0 0 0	0 0 0 0	0 0 1 1					
index	0	2						
limit	= 2							

- Further operations only consider w₀ and w₂
- Trailing solver: undo operations upon backtrack
- Copying solver: make copies of the state

Background

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

	w ₀	w ₁	W ₂	
words	1 0 0 0	0 0 0 0	0 0 1 1	
index	0	2		
limit	= 2	•		-

- Further operations only consider w₀ and w₂
- Trailing solver: undo operations upon backtrack
- Copying solver: make copies of the state
- words is not compact in memory

Background

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

- - Further operations only consider *w*₀ and *w*₂
 - Trailing solver: undo operations upon backtrack
 - Copying solver: make copies of the state
 - words is not compact in memory

Non-compactness problem for a copying solver

Outline

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

1. Background

2. Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically Compact Data-Structures

3. Sharing Tables

4. Evaluation

5. Conclusion

Outline

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables Evaluation

Conclusion

References

1. Background

2. Dynamically Compact Sparse Bit-Sets Compact Bit-Sets

3. Sharing Tables

4. Evaluation

5. Conclusion

Compact Bit-Sets

The operations we just watched:

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

Compact Bit-Sets

The operations we just watched:

```
\begin{array}{c|c} \textbf{for } i \leftarrow \text{limit} - 1 \ \textbf{downto} \ \textbf{0} \ \textbf{do} \\ & \text{words}[\text{index}[i]] \leftarrow_{\&} \text{mask}[\text{index}[i]] \\ & \textbf{if words}[\text{index}[i]] = \textbf{0} \ \textbf{then} \\ & \text{index}[i] \leftarrow \text{index}[\text{limit} - 1] \\ & \text{limit} \leftarrow \text{limit} - 1 \end{array}
```

Compact Bit-Sets Dynamically Compact

Background

Dynamically

Compact

Sparse Bit-Sets

Sharing Tables

Evaluation

Conclusion

References

end end

Background

Dynamically

Compact Bit-Sets

Compact

Sparse Bit-Sets

Sharing

Tables Evaluation

Conclusion

References

Compact Bit-Sets

The operations we just watched:

```
\begin{array}{c|c} \textbf{for } i \leftarrow \texttt{limit} - 1 \ \textbf{downto} \ \textbf{0} \ \textbf{do} \\ & \texttt{words}[\texttt{index}[i]] \leftarrow_{\&} \texttt{mask}[\texttt{index}[i]] \\ & \texttt{if words}[\texttt{index}[i]] = \texttt{0} \ \textbf{then} \\ & \texttt{index}[i] \leftarrow \texttt{index}[\texttt{limit} - \texttt{1}] \\ & \texttt{limit} \leftarrow \texttt{limit} - \texttt{1} \end{array}
```

end

end

```
Compact implementation:
```

```
for i 
limit - 1 downto 0 do
words[i] 
if words[i] = 0 then
index[i] 
words[i] 
words[i] 
words[i] 
words[limit - 1]
limit 
end
end
```


Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0
words	1	1	0	1	1	0	0	0	1	0	1	1	1	0	0	1
index		С				-	1			í	2			-	3	

limit = 4

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0
														8	k	
words	1	1	0	1	1	0	0	0	1	0	1	1	1	0	0	1
index	0					1	L		2 3						3	
limit	=	4														

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 0

words	1 1 0 1	1 0 0 0	1 0 1 1	0 0 0 0
index	0	1	2	3
	2			

limit = 3

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask **1** 0 **1** 0 0 0 **1** 0 0 **1 1 1** 0 0 **1** 0

words 1 1 0 1 1 0 0 0 1 0 1 1 index 0 1 2

limit = 3

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

1 1 1 1 1 0 1 0 mask 1 0 0 0 0 0 0 0 & words 1 1 0 1 1 0 0 0 1 0 1 1 index 0 1 2

limit = 3

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask **1** 0 **1** 0 0 0 **1** 0 0 **1 1 1** 0 0 **1** 0

1 0 0 0 0 0 1 1

1

words **1 1 0 1** index 0

limit = 3

NordConsNet

2

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0
mask	L L	0	т	0		0	т	0		т	т	Т	0	U	т	0
						8	k l									
words	1	1	0	1	1	0	0	0	0	0	1	1				
index		0				1	L			2	2					
limit	= :	3														

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

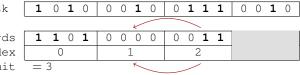
Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References


mask **1** 0 **1** 0 0 0 **1** 0 0 **1 1 1** 0 0 **1** 0

words 1 1 0 1 0 0 0 0 0 0 1 1 index 0 1 2

limit = 3

- index[2] overwrites index[1], and
- words[2] overwrites words[1].

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask **1** 0 **1** 0 0 0 **1** 0 0 **1 1** 1 0 0 **1** 0

 words
 1
 1
 0
 1
 1

 index
 0
 2
 2
 1

limit = 2

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically

Sharing Tables

Evaluation

Conclusion

References

mask	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0
		&	2													
words	1	1	0	1	0	0	1	1								
index		0				2	2									
limit	= ;	2														

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

mask **1** 0 **1** 0 0 0 **1** 0 0 **1 1 1** 0 0 **1** 0

2

t-Sets Words

index limit

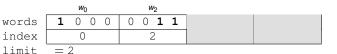
 $\begin{array}{c} ex & 0 \\ t & = 2 \end{array}$

1 0 0 0 0 0 1 1

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets


Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

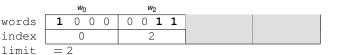
References

Non-empty words are contiguous in memory

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets


Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

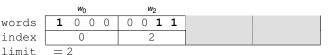
Non-empty words are contiguous in memory

Uses less indirection and has better spatial locality

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets


Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

Non-empty words are contiguous in memory

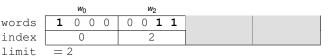
Uses less indirection and has better spatial locality

 words[i] ←_& mask[i] instead of words[index[i]] ←_& mask[index[i]]

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets


Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

- Non-empty words are contiguous in memory
- Uses less indirection and has better spatial locality
 - words[i] ←_& mask[i] instead of words[index[i]] ←_& mask[index[i]]
- Trailing solvers can use the implementation (if elements are swapped)

Outline

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables Evaluation Conclusion References

1. Background

2. Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically Compact Data-Structures

3. Sharing Tables

4. Evaluation

5. Conclusion

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables Evaluation

Evaluation

Conclusion

References

Small tables can be further compacted

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables Evaluation Conclusion

<u>References</u>

Small tables can be further compacted

Specialised bit-sets used when possible:

- 16- or 8-bit integers instead of 32 for indexing
- No indexing for sufficiently small tables

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

Small tables can be further compacted

Specialised bit-sets used when possible:

- 16- or 8-bit integers instead of 32 for indexing
- No indexing for sufficiently small tables
- Best representation chosen dynamically during copying

Background

Dynamically Compact Sparse Bit-Sets

Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

Small tables can be further compacted

Specialised bit-sets used when possible:

- 16- or 8-bit integers instead of 32 for indexing
- No indexing for sufficiently small tables
- Best representation chosen dynamically during copying
- Most copies created close to the leaves of the search tree, where many words are empty

Outline

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation Conclusion References

1. Background

2. Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically Compact Data-Structures

3. Sharing Tables

4. Evaluation

5. Conclusion

Sharing is caring

Background

Dynamically Compact Sparse Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

Background

- Dynamically Compact Sparse Bit-Sets
- Dynamically Compact Data-Structures

Sharing Tables

- Evaluation
- Conclusion
- References

Sharing is caring

• ...for memory usage

Background

- Dynamically Compact Sparse Bit-Sets
- Dynamically Compact Data-Structures

Sharing Tables

- Evaluation
- Conclusion
- References

- ...for memory usage
- ...for copying time

Background

- Dynamically Compact Sparse Bit-Sets
- Dynamically Compact

Sharing Tables

- Evaluation
- Conclusion
- References

- ...for memory usage
- ...for copying time
- ...for cache performance

- Background
- Dynamically Compact Sparse Bit-Sets
- Compact Bit-Set: Dynamically Compact

Sharing Tables

- Evaluation
- Conclusion
- References

Sharing is caring

- ...for memory usage
- ...for copying time
- ...for cache performance

■ Tuples and supports bit-sets are shared:

- Background
- Dynamically Compact Sparse Bit-Sets
- Dynamically Compact Data-Structures

Sharing Tables

- Evaluation
- Conclusion
- References

- ...for memory usage
- ...for copying time
- ...for cache performance
- Tuples and supports bit-sets are shared:
 - 1 Between a propagator and its copies

- Background
- Dynamically Compact Sparse Bit-Sets
- Compact Bit-Set: Dynamically Compact Data-Structures

Sharing Tables

- Evaluation
- Conclusion
- References

- ...for memory usage
- ...for copying time
- ...for cache performance
- Tuples and supports bit-sets are shared:
 - 1 Between a propagator and its copies
 - 2 Between different propagators reasoning on the same set of tuples

- Background
- Dynamically Compact Sparse Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

- ...for memory usage
- ...for copying time
- ...for cache performance
- Tuples and supports bit-sets are shared:
 - 1 Between a propagator and its copies
 - 2 Between different propagators reasoning on the same set of tuples
 - supports are computed based on the tuples (domain-independent)

- Background
- Dynamically Compact Sparse Bit-Sets
- Dynamically Compact Data-Structures

Sharing Tables

- Evaluation
- Conclusion
- References

- ...for memory usage
- ...for copying time
- ...for cache performance
- Tuples and supports bit-sets are shared:
 - 1 Between a propagator and its copies
 - 2 Between different propagators reasoning on the same set of tuples
- supports are computed based on the tuples (domain-independent)
- Sharing supports not exploited in the original implementation [1]

Outline

Background

- Dynamically Compact Sparse Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

1. Background

- 2. Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically Compact Data-Structures
- 3. Sharing Tables
- 4. Evaluation
- 5. Conclusion

Evaluation Setup

Background

Dynamically Compact Sparse Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

Standard benchmark set available at

http://becool.info.ucl.ac.be/resources/
positive-table-constraints-benchmarks

1 621 CSP instances (table constraints only), min-domain + min-value branching strategy

Solvetime and peak memory usage on top of Gecode

(More detailed description provided on extra slide 22)

COMPACT Compact bit-set

Background

Dynamically Compact Sparse Bit-Sets

Dynamically Compact

Sharing Tables

Evaluation

Conclusion

References

COMPACT++ Compact bit-set and compact indexing structure HYBRID COMPACT++ and drops indexing for #words < 4

COMPACT Compact bit-set

Background

Dynamically Compact Sparse Bit-Sets Compact Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

COMPACT++ Compact bit-set and compact indexing structure HYBRID COMPACT++ and drops indexing for #words ≤ 4

Solvetime	Сомраст	COMPACT++	Hybrid
min mean max deviation			
Peak memory	Сомраст	COMPACT++	Hybrid

COMPACT Compact bit-set

Background

Dynamically Compact Sparse Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

COMPACT++Compact bit-set and compact indexing structureHYBRIDCOMPACT++ and drops indexing for #words ≤ 4

Solvetime	Сомраст	COMPACT++	Hybrid
min	-67.1%		
mean	-14.4%		
max	0.4%		
deviation	$\pm 30.8\%$		
Peak memory	Сомраст	COMPACT++	Hybrid
Peak memory	Compact -27.2%	COMPACT++	Hybrid
		COMPACT++	Hybrid
min	-27.2%	COMPACT++	Hybrid

NordConsNet

COMPACT Compact bit-set

Background

Dynamically Compact Sparse Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

COMPACT++Compact bit-set and compact indexing structureHYBRIDCOMPACT++ and drops indexing for #words ≤ 4

Solvetime	Сомраст	COMPACT++	Hybrid
min	-67.1%	-66.4%	
mean	-14.4%	-13.7%	
max	0.4%	0.7%	
deviation	$\pm 30.8\%$	±29.7%	
Peak memory	Сомраст	COMPACT++	Hybrid
Peak memory min	Compact -27.2%	Compact++	Hybrid
			Hybrid
min	-27.2%	-33.4%	Hybrid

COMPACT Compact bit-set

Background

Dynamically Compact Sparse Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

COMPACT++Compact bit-set and compact indexing structureHYBRIDCOMPACT++ and drops indexing for #words ≤ 4

Solvetime	Сомраст	COMPACT++	Hybrid
min mean max deviation	-67.1% -14.4% 0.4% ±30.8%	-66.4% -13.7% 0.7% ±29.7%	-66.3% -13.6% 0.9% ±29.6%
Peak memory	Сомраст	COMPACT++	Hybrid

NordConsNet

COMPACT Compact bit-set

Background

Dynamically Compact Sparse Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

COMPACT++Compact bit-set and compact indexing structureHYBRIDCOMPACT++ and drops indexing for #words ≤ 4

Solvetime	Сомраст	COMPACT++	Hybrid
min mean max	-67.1% -14.4% 0.4%	-66.4% -13.7% 0.7%	-66.3% -13.6% 0.9%
deviation	$\pm 30.8\%$	±29.7%	$\pm 29.6\%$
Peak memory	Сомраст	COMPACT++	Hybrid
Peak memory min mean max	COMPACT -27.2% -4.5% 0.2%	Compact++ -33.4% -6.8% 0.0%	Hybrid -33.2% -7.5% -0.3%

Miss rate of D1 cache decreases by $\approx 3\%$ on average

NordConsNet

Background

- Dynamically Compact Sparse Bit-Sets
- Compact Bit-Sets Dynamically
- Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

Sharing tables:

- Solvetime decreases by 4.6% and memory usage by 58.3% on average
- Miss rate of D1 cache decreases by \approx 18% on average

Background

- Dynamically Compact Sparse Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

Sharing tables:

- Solvetime decreases by 4.6% and memory usage by 58.3% on average
- Miss rate of D1 cache decreases by \approx 18% on average

Previous propagators in Gecode:

- Solvetime decreases by 85.7% and memory usage by 45.4% on average
- Timed out on 85 additional instances

Background

- Dynamically Compact Sparse Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

Sharing tables:

- Solvetime decreases by 4.6% and memory usage by 58.3% on average
- Miss rate of D1 cache decreases by \approx 18% on average

Previous propagators in Gecode:

- Solvetime decreases by 85.7% and memory usage by 45.4% on average
- Timed out on 85 additional instances

So called residual supports shown not to be beneficial

Outline

Background

- Dynamically Compact Sparse Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

1. Background

- 2. Dynamically Compact Sparse Bit-Sets Compact Bit-Sets Dynamically Compact Data-Structures
- **3. Sharing Tables**
- 4. Evaluation
- 5. Conclusion

Background

Dynamically Compact

Sparse Bit-Sets

Sharing

Tables Evaluation

Conclusion

References

Contributions:

- A compact implementation of sparse bit-sets
- Tables are shared
- Table constraints in Gecode are about a magnitude faster than before and use half the memory
- Potential benefit for trailing solvers

Future work:

- Exact variable deltas might speed up propagation
- Re-ordering tuples
- Extensions of compact-table

Background

Dynamically Compact Sparse Bit-Sets

Dynamically Compact Data-Structures

Sharing Tables

Evaluation

Conclusion

References

J. Demeulenaere, R. Hartert, C. Lecoutre, G. Perez, L. Perron, J. Régin and P. Schaus, 'Compact-table: Efficiently filtering table constraints with reversible sparse bit-sets', in *Proceedings of CP 2016*, pp. 207–223.

- H. Verhaeghe, C. Lecoutre and P. Schaus, 'Extending compact-table to negative and short tables', in *AAAI*, 2017, pp. 3951–3957.
- H. Verhaeghe, C. Lecoutre, Y. Deville and P. Schaus, 'Extending compact-table to basic smart tables', in *International conference on principles and practice of constraint programming*, Springer, 2017, pp. 297–307.

N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck and G. Tack, 'Minizinc: Towards a standard CP modelling language', in *Proceedings of CP 2007*, 2007, pp. 529–543.

Background

- Dynamically Compact Sparse Bit-Sets Compact Bit-Sets
- Dynamically Compact Data-Structures
- Sharing Tables
- Evaluation
- Conclusion
- References

Compact Tables

NordConsNet

Detailed Evaluation Setup

Background

- Dynamically Compact Sparse Bit-Sets
- Compact Bit-Set Dynamically Compact
- Sharing Tables
- Evaluation
- Conclusion

References

- Translated into *MiniZinc* [4] using the tool xcsp2mzn, available at https://github.com/CP-Unibo/mzn2feat.
- We skip instances that
 - 1 cannot be translated to *MiniZinc* due to non-trivial parse errors (117 instances);
 - 2 require more than 8 GB of RAM (43 instances);
 - 3 cannot be solved within the time out for the ORIGINAL configuration (170 instances); or
 - 4 are solved in less than 1 second for the ORIGINAL configuration (1014 instances).

In total, 277 instances are evaluated.

- Solvetime does not include parsing FlatZinc
- Cache analysis uses Cachegrind